CERTIFICATE OF ANALYSIS

PRODUCED: JUL 21, 2022

SAMPLE: OG KUSH BREATH - BUDS (FLOWER) // CLIENT: MJVERDANT // BATCH: PASS

BATCH NO.: 1A405030001F979000002420
TEST PKG: 1A405030001F979000002446
SRC PKG: 1A405030001F979000002420
MATRIX: FLOWER
SAMPLEID: CAM-220715-084
COLLECTED ON: JUL 15, 2022
RECEIVED ON: JUL 15, 2022
BATCH/SAMPLE SIZE: 7687 G / 38.51 G
SAMPLED BY: STEVEN MULLALLY
RECEIVED BY: STEVEN MULLALLY

CANNABINOID OVERVIEW

THCA:

Δ^{9}-THC:
11.2 \%
0.08 \%
11.36 \%

BATCH RESULT: PASS

POTENCY	TESTED	PESTICIDES	PASS
FOREIGN	PASS	TERPENES	TESTED
METALS	PASS	WATER	PASS
MICROBIAL	PASS		

POT-01: CANNABINOID POTENCY ANALYSIS BY HPLC-DAD // JUL 20, 2022

ANALYTE	LIMIT	AMT		AMT	LOD/LOQ ($\mu \mathrm{g} / \mathrm{g}$)	PASS/FAIL	ANALYTE	LIMIT	AMT		AMT	LOD/LOQ ($\mu \mathrm{g} / \mathrm{g}$)	PASS/FAIL
CBC		ND		ND	$0.0517 / 0.172$	N/A	Δ^{8}-THC		ND		ND	$0.0578 / 0.193$	N/A
CBD		ND		ND	$0.109 / 0.363$	N/A	Δ^{9}-THC		0.0786%	0.786	mg / g	$0.102 / 0.34$	N/A
CBDA		ND		ND	$0.142 / 0.474$	N/A	THCA		11.2 \%	112	mg / g	$0.0883 / 0.294$	N/A
CBDV		ND		ND	$0.0673 / 0.224$	N/A	THCV		ND		ND	$0.0699 / 0.233$	N/A
CBG		0.0268 \%	0.268	mg / g	$0.0576 / 0.192$	N/A	TOTAL THC **		9.90 \%	99	mg / g		N/A
CBGA		0.0594 \%	0.594	mg / g	$0.0328 / 0.109$	N/A	TOTALCBD **		ND		ND		N/A
CBN		ND		ND	$0.0848 / 0.283$	N/A							

** TOTAL THC = DELTA-8-THC + DELTA-9-THC + (THCA X 0.877)
** TOTAL CBD $=C B D+(C B D A X 0.877)$

TRP-013: TERPENE ANALYSIS BY GC-MS // JUL 20, 2022
ANALYTE
TOTALTERPENES*
LIMONENE
a-HUMULENE
TRANS-CARYOPHYLLENE
LINALOOL*
a-BISABOLOL
TRANS-NEROLIDOL
ß-PINENE
(1R)-ENDO-(+)-FENCHYL ALCOHOL
a-PINENE
ß-MYRCENE
PULEGONE
ISOPULEGOL
(+)-FENCHONE
SABINENE
SABINENE HYDRATE
TERPINOLENE

AMT (\%)	LOD/LOQ $(\mu \mathrm{g} / \mathrm{g})$	PASS/FAIL	ANALYTE
1.108%		$\mathrm{~N} / \mathrm{A}$	GUAIOL
0.221%	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$	TRANS-B-OCIMENE
0.132%	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$	ISOBORNEOL
0.490%	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$	$\Delta^{3}-\mathrm{CARENE}$
0.087%	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$	GERANYLACETATE
0.086%	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$	Y-TERPINENE
0.024%	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$	EUCALYPTOL
0.022%	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$	CIS-NEROLIDOL
0.019%	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$	CIS-B-OCIMENE
0.014%	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$	CEDROL
0.013%	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$	CARYOPHYLLENEOXIDE
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$	CAMPHOR
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$	CAMPHENE
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$	a-TERPINENE
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$	a-PHELLANDRENE
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$	a-CEDRENE
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$	VALENCENE

AMT (\%)	LOD/LOQ $(\mu \mathrm{g} / \mathrm{g})$	PASS/FAIL
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$
ND	$0.5 / 1$	$\mathrm{~N} / \mathrm{A}$

* BEYOND SCOPE OF ACCREDITATION THIS REPORT MAY NOT BE REPRODUCED EXCEPT IN FULL WITHOUT APPROVAL FROM CAMBIUM ANALYTICA. THE RESULTS HEREIN RELATE ONLY TO THE

ANALYTE	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{g}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL	ANALYTE	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{g}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL
CHLORFENAPYR	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	$6.12 / 20.5$	PASS	METHYL PARATHION	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$3.12 / 10.5$	PASS

PLC-02: CHEMICAL RESIDUE ANALYSIS BY LC-MS/MS // JUL 21, 2022

ANALYTE	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{g}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL	AnALYte	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{g}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL
ABAMECTIN	$0.5 \mu \mathrm{~g} / \mathrm{g}$	ND	70.3/234	PASS	IMAZALIL	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$15.8 / 52.5$	PASS
ACEPHATE	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	$16.6 / 55.2$	PASS	IMIDACLOPRID	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	34.5/115	PASS
ACEQUINOCYL	$2 \mu \mathrm{~g} / \mathrm{g}$	ND	28.6/95.5	PASS	KRESOXIM-		ND	12.1/40.2	PASS
ACETAMIPRID	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	14.7/49.1	PASS	METHYL	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	12.1/40.2	PASS
ALDICARB	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	$43.1 / 144$	PASS	MALATHION	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	15.9/53	PASS
AZOXYSTROBIN	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	10.6/35.5	PASS	METALAXYL	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$17.9 / 59.5$	PASS
BIFENAZATE	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	25.5/85	PASS	METHIOCARB	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	14.1/46.9	PASS
BIFENTHRIN	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$14.8 / 49.3$	PASS	METHOMYL	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	9.59/32	PASS
BOSCALID	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	13/42.5	PASS	M GK-264	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	19.5/65.1	PASS
CARBARYL	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	12.3/40.9	PASS	MYCLOBUTANIL	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	20.1/66.9	PASS
CARBOFURAN	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	10.9/36.2	PASS	NALED	$0.5 \mu \mathrm{~g} / \mathrm{g}$	ND	$23.4 / 77.9$	PASS
CHLORANTRANIL-	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	25/83.3	PASS	OXAMYL	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	$35.8 / 119$	PASS
IPROLE	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$25 / 83.3$	PASS	PACLOBUTRAZOL	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	36.9/123	PASS
CHLORPYRIFOS	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	25.1/83.7	PASS	PERMETHRIN	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	38.4/128	PASS
CLOFENTEZINE	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	20.5/68.3	PASS	PHOSMET	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	24.3/81.1	PASS
CYFLUTHRIN	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	39.4/131	PASS	PRALLETHRIN	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$37.8 / 126$	PASS
CYPERMETHRIN	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	28.2/93.9	PASS	PROPICONAZOLE	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	$41.2 / 137$	PASS
DAMINOZIDE	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	24.3/81	PASS	PROPOXUR	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$11.8 / 39.4$	PASS
DIAZINON	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	18.9/63.1	PASS	PYRETHRINS	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	$20.4 / 67.9$	PASS
DICHLORVOS	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	$12.8 / 42.6$	PASS	PYRIDABEN	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$26.6 / 88.6$	PASS
DIMETHOATE	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	12.5/41.5	PASS	SPINOSAD	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$5.99 / 20$	PASS
ETHOPROPHOS	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	19.4/64.8	PASS	SPINOSAD A		ND	6.49/21.6	N/A
ETOFENPROX	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	14.6/48.7	PASS	SPINOSAD D		ND	$2.45 / 8.14$	N/A
ETOXAZOLE	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	13.8/45.9	PASS	SPIROMESIFEN	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	14.9/49.6	PASS
FENOXYCARB	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$20.3 / 67.8$	PASS	SPIROTETRAMAT	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$36.1 / 120$	PASS
FENPYROXIMATE	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	44.7/149	PASS	SPIROXAMINE	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	12.5/41.6	PASS
FIPRONIL	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	$45.9 / 153$	PASS	TEBUCONAZOLE	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	38.3/128	PASS
FLONICAMID	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	$22.6 / 75.3$	PASS	THIACLOPRID	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$15.7 / 52.4$	PASS
FLUDIOXONIL	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	$11.2 / 37.3$	PASS	THIAMETHOXAM	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	13.9/46.4	PASS
HEXYTHIAZOX	$1 \mu \mathrm{~g} / \mathrm{g}$	ND	28.7/95.7	PASS	TRIFLOXYSTROB IN	$0.2 \mu \mathrm{~g} / \mathrm{g}$	ND	19.1/63.5	PASS

ANALYTE	LIMIT	AMT (CFU/g)	PASS/FAIL
YEAST \& MOLD	$100000 \mathrm{CFU} / \mathrm{g}$	$200 \mathrm{CFU} / \mathrm{g}$	PASS

COL-027: TOTAL COLIFORMS // JUL 18, 2022

ANALYTE	LIMIT	AMT (CFU/g)	PASS/FAIL
COLIFORMS	$1000 \mathrm{CFU} / \mathrm{g}$	ND	PASS

ASP-029: ASPERGILLUS SPP. // JUL 18, 2022

SAL-030: SALMONELLA // JUL 18, 2022

| ANALYTE | LIMIT | AMT (CFU/g) | PASS/FAIL |
| :--- | ---: | ---: | ---: | ---: |
| SALMONELLASPP. | Any amount in 1 gram | ND | PASS |

STEC-030: SHIGA TOXIN PRODUCING E. COLI // JUL 18, 2022

ANALYTE	LIMIT AMT (CFU/g) PASS/FAIL	
SHIGA TOXIN-PRODUCINGE.	Any amount in	
COLI	gram	ND

MET-05: HEAVY METALS ANALYSIS BY ICP-MS // JUL 18, 2022

ANALYTE	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{g}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL	ANALYTE	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{g}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL
ARSENIC	$0.4 \mu \mathrm{~g} / \mathrm{g}$	ND	$0.0448 / 0.5$	PASS	LEAD	$1 \mu \mathrm{~g} / \mathrm{g}$	$0.002 \mu \mathrm{~g} / \mathrm{g}$	$0.0169 / 0.5$	PASS
CADMIUM	$0.4 \mu \mathrm{~g} / \mathrm{g}$	$0.001 \mu \mathrm{~g} / \mathrm{g}$	$0.0256 / 0.5$	PASS	MERCURY	$0.2 \mu \mathrm{~g} / \mathrm{g}$	$0.002 \mu \mathrm{~g} / \mathrm{g}$	$0.00439 / 0.05$	PASS
CHROMIUM	$1.2 \mu \mathrm{~g} / \mathrm{g}$	ND	$0.0274 / 0.5$	PASS	NICKEL	$1 \mu \mathrm{~g} / \mathrm{g}$	$0.018 \mu \mathrm{~g} / \mathrm{g}$	$0.0271 / 0.5$	PASS
COPPER		$4.100 \mu \mathrm{~g} / \mathrm{g}$	$0.0446 / 0.5$	N/A					
AWA-09: WATER ACTIVITY // JUL 18, 2022									
ANALYTE		LIMIT	AMT (Aw)	PASS/FAIL					
WATER ACTI		0.65 Aw	0.481 Aw	PASS					
FOR-07: FOREIGN MATTER ANALYSIS // JUL 18, 2022									
ANALYTE			IT AMT (\%)	PASS/FAIL	ANALYTE		LIMIT	AMT (\%)	PASS/FAIL
INORGANIC MATTER		Any amount ND		PASS	STEMS		5 \%	1.000%	PASS
ORGANIC MATTER			\% ND	PASS					

ACCREDITATIONS

ILAC-MRA, PJLA ACCREDITED

PLC-02: CHEMICAL RESIDUE ANALYSIS BY LC-MS/MS ABAMECTIN, ABAMECTIN BA, ABAMECTIN BB, ACEPHATE, ACEQUINOCYL, ACETAMIPRID, ALDICARB, AZOXYSTROBIN, BIFENAZATE, BIFENTHRIN, BOSCALID, CARBARYL,
CARBOFURAN, CHLORANTRANILIPROLE, CHLORFENAPYR, CHLORPYRIFOS, CLOFENTEZINE, CYFLUTHRIN, CYPERMETHRIN, DAMINOZIDE, DIAZINON, DICHLORVOS, DIMETHOATE, ETHOPROPHOS, ETOFENPROX, ETOXAZOLE, FENOXYCARB, FENPYROXIMATE, FIPRONIL, FLONICAMID, FLUDIOXONIL, HEXYTHIAZOX, IMAZALIL, IMIDACLOPRID, KRESOXIM-METHYL, MGK-264, MALATHION, MALATHION A, METALAXYL, METHIOCARB, METHOMYL, METHYL PARATHION, MYCLOBUTANIL, NALED, OXAMYL, PACLOBUTRAZOL, PERMETHRIN, PERMETHRIN CIS, PERMETHRIN TRANS, PHOSMET, PRALLETHRIN, PROPICONAZOLE, PROPOXUR, PYRETHRINS, PYRETHRINS CINERIN I, PYRETHRINS CINERIN I3, PYRETHRINS JASMOLIN I, PYRETHRINS JASMOLIN I-3, PYRETHRINS PYRETHRIN I, PYRIDABEN, SPINOSAD, SPINOSAD A, SPINOSAD D, SPIROMESIFEN, SPIROTETRAMAT, SPIROXAMINE, TEBUCONAZOLE, THIACLOPRID, THIAMETHOXAM, TRIFLOXYSTROBIN

TRP-013: TERPENE ANALYSIS BY GC-MS
(+)-FENCHONE, (1R)-ENDO-(+)-FENCHYL ALCOHOL, CAMPHENE, CAMPHOR, CARYOPHYLLENE OXIDE, CEDROL, DELTA-3-CARENE, EUCALYPTOL, FENCHOL, GERANIOL, GERANYL ACETATE, GUAIOL, ISOBORNEOL, ISOPULEGOL, LIMONENE, NEROLIDOL, OCIMENE, PHELLANDRENE, PULEGONE, SABINENE, SABINENE HYDRATE, TERPINEOL 3, terpinolene, valencene, alpha-bisabolol, alphaCEDRENE, ALPHA-HUMULENE, ALPHA-PHELLANDRENE, ALPHAPINENE, ALPHA-TERPINENE, BETA-MYRCENE, BETA-PINENE, CIS-NEROLIDOL, CIS-BETA-OCIMENE, GAMMA-TERPINENE, TRANS-CARYOPHYLLENE, TRANS-NEROLIDOL, TRANS-BETAocimene

POT-01: CANNABINOID POTENCY ANALYSIS BY HPLC-DAD CBD, CBDA, DELTA-9-THC, THCA, CBDV, THCV, CBG, CBGA, CBN, DELTA-8-THC, CBC, DELTA-8 + DELTA-9-THC, TOTAL CBD, TOTAL THC

MET-05: HEAVY METALS ANALYSIS BY ICP-MS
ARSENIC, CADMIUM, CHROMIUM, COPPER, LEAD, MERCURY, NICKEL

FOR-07: FOREIGN MATTER ANALYSIS
INORGANIC MATTER, ORGANIC MATTER, STEMS
PGC-03: CHEMICAL RESIDUE ANALYSIS BY GC-MS/MS CHLORFENAPYR, METHYL PARATHION
AWA-09: WATER ACTIVITY
WATER ACTIVITY

